Istnienie Wstęgi Möbiusa kłóci się ze zdrowym rozsądkiem

Wstęga Möbiusa – kształt, który doskonale znamy (z dzieciństwa z zabaw, z dorosłości z logotypów firm i idei) – przez 50 lat stanowiła nie lada zagadkę dla inżynierów, matematyków i fizyków. Choć wydawało się, że można było ją robić dowolnie małą, miała swoje ograniczenia. Złe dobranie jej długości i szerokości powodowało, że się zrywała i nie dawała zakrzywić. To duży problem, bo wstęgę dość często można spotkać w automatyce czy urządzeniach opartych na pracy silnika.
Wstęga Mobiusa Istnienie Wstęgi Möbiusa kłóci się ze zdrowym rozsądkiem
Wstęga Mobiusa / Wikipedia CC BY-SA 3,0 David Benbennick

Sama wstęga to szczególna powierzchnia odkryta przez matematyków dopiero w 1858 roku (m.in. Augusta Möbiusa, stąd jej nazwa) – jednostronna, choć istniejąca w jak najbardziej trójwymiarowym świecie. W naukowym żargonie to dwuwymiarowa zwarta rozmaitość topologiczna nieorientowalna z brzegiem, co oznacza, że nie ma na niej pojęcia „wewnątrz”, „na zewnątrz”, „na górze” lub „na dole” kształtu.

Wstęga popularna w przemyśle

Wstęga Möbiusa ma tylko jedną powierzchnię, co kłóci się ze zdrowym rozsądkiem. Ale łatwo to sprawdzić – rysując linię na jej powierzchni, prędzej czy później trafimy ołówkiem na początek linii. Jej model można zrobić, sklejając taśmę (na przykład papierową) końcami przy odwróceniu jednego z końców o 180 stopni względem drugiego. Proste? W praktyce tak, ale jak dokładnie opisać taką jak najbardziej przestrzenną wstęgę, na której znajduje się tylko jedna – po sklejeniu – nieskończona płaszczyzna?

Jej kształt zachwycał już od pierwszych tygodni jej odkrycia – dzisiaj znajdziemy ją w symbolu recyklingu, w logotypie Międzynarodówki Humanistycznej czy w symbolu nieskończoności (związanym z kształtem wstęgi wyłącznie konicydentalnie) oraz w logo sieciowego dysku Google tworzącym niekończącą się pętlę, tym razem w formie trójkąta. Z kształtu korzystają również organizacje pozarządowe – wszystkie różowe, niebieskie, białe czy czarne wstążki symbolizujące walkę o generalnie lepszy ludzki byt są właśnie wstęgami Möbiusa.
Jeśli zaczniemy się nią bawić, pojawiają się kolejne zaskakujące właściwości kształtu. Rozcięta wzdłuż nie spowoduje, że z jednej otrzymamy dwie podobne wstęgi – ta, którą trzymamy w ręku, będzie po prostu dwa razy dłuższa i podwójnie skręcona, choć wciąż z jedną płaszczyzną.

Jeśli przetniemy taśmę skręconą we wstęgę skręconą o 360 stopni (zamiast pierwotnych 180) otrzymamy dwa kręgi połączone, jak ogniwa w łańcuchu.

Poza wzbudzaniem zachwytu bawiących się nią wstęga niemal natychmiast znalazła zastosowanie w mechanice – tam, gdzie dwa koła połączone są taśmą, zastąpienie jej wstęgą Möbiusa zwielokrotnia trwałość taśmy i powoduje jej wolniejsze zużycie z obu naraz, a nie tylko z jednej strony. Stąd chętnie korzysta się z niej wszędzie tam, gdzie koła zamachowe silników potrzebują taśmowego przeniesienia napędu. Zdarza się znaleźć to rozwiązanie zamiast zębatek w rzadkich i przez to drogich szwajcarskich zegarkach. Rzadkich, bo specjaliści od mikromechaniki szybko zorientowali się, że tego kształtu nie da się pomniejszać w nieskończoność. Przy coraz mniejszej długości przy zachowaniu szerokości wstęgi okazuje się, że kształt się zrywa. Od półwiecza matematycznym problemem było znalezienie proporcji, przy jakich można tego uniknąć.

Po latach liczenia

Rozwiązanie zaproponował matematyk z Brown University Richard Schwartz, dzisiaj przyznający się, że od problemu uzależnił się, nie mogąc pracować nad czymkolwiek innym.

„Przez lata próbowałem rozwiązać ten problem i w 2021 r. opublikowałem artykuł przedstawiający obiecujące podejście, które jednak ostatecznie okazało się niewystarczające” – wspomina dzisiaj na łamach naukowych czasopism. Niedawno zaczął więc eksperymentować ze zgniataniem papierowych pasków w nadziei, że kształt 2D będzie łatwiejszy do matematycznego rozwiązania. Kiedy jednak rozciął jedną z tych pętli pod kątem (co było konieczne do rozwiązania problemu optymalizacji), zobaczył coś, czego się nie spodziewał… Dwuwymiarowy papier nie wyglądał jak równoległobok, jak opisał w swojej pierwszej pracy. Był to raczej trapez – kształt o czterech prostych bokach, z których tylko dwa są do siebie równoległe.

Geometria złożonych kształtów pozwoliła na określenie, że stosunek długości do szerokości wstęgi powinien być większy od pierwiastka kwadratowego z trzech (czyli około 1,73).

W ciągu wielu nieprzespanych nocy i przy pomocy kilku kolegów – jak wspomina Schwartz – matematyk poprawił swoje wcześniejsze błędy i doszedł do eleganckiego rozwiązania z pierwiastkiem z trzech, czego przez pół wieku nie dopatrzyli się inni matematycy.
Co zmieni w naszym życiu niedawne odkrycie matematyków? Przeciętny człowiek raczej różnicy nie dostrzeże – wstęga Möbiusa dalej pozostanie fascynującą ciekawostką, która pewnie trafi jeszcze na niejedno logo. Jednak w z pewnością znalezienie odpowiednich proporcji ułatwi tysiącom producentów, projektantów i inżynierów planowanie kolejnych linii produkcyjnych w fabrykach dostarczających nam samochody czy sprzęt AGD. Z pewnością wpłynie na lepsze wykorzystanie materiałów i pośrednio na środowisko naszej planety. Co ciekawe, matematyk, który znalazł rozwiązanie, nie zarobi na nim ani centa. Zgodnie z międzynarodowym prawem nie można opatentować prawa natury ani zasad matematyki. Richard Schwartz może liczyć wyłącznie na zasłużone miejsce w akademickich podręcznikach matematyki.

Tekst pochodzi z 39 (1809) numeru „Tygodnika Solidarność”.


 

POLECANE
Witold Waszczykowski: Lewicowych dietetyków atak na rolnictwo tylko u nas
Witold Waszczykowski: Lewicowych "dietetyków" atak na rolnictwo

W wielu państwach trwają protesty rolników przeciwko umowie handlowej Unii Europejskiej z państwami Ameryki Południowej z ugrupowania Mercosur. Rolnicy obawiają się napływu taniej żywności z regionu gdzie nie obowiązują europejskie normy i standardy. W tym duchu redaktor Monika Rutke zadała niedawno zasadne pytanie ministrowi Radosławowi Sikorskiemu, czy Polska przyłączy się do francuskiego sprzeciwu wobec umowie z Mercosur.

Kim wszedł do wojny. To alarm także dla Azji tylko u nas
Kim wszedł do wojny. To alarm także dla Azji

Udział kilkunastu tysięcy żołnierzy Korei Północnej nie zmieni biegu wojny Rosji z Ukrainą. Wszyscy skupiamy się na tym, co zyskuje Putin. A moim zdaniem więcej może zyskać Kim Dzong Un. I to nie jest dobra wiadomość dla azjatyckiego Dalekiego Wschodu. Rosja postrzega agresywną Koreę Północną jako użyteczny sposób na zajęcie, odwrócenie uwagi i zagrożenie siłom USA w regionie Azji i Pacyfiku, podczas gdy Rosja realizuje ważniejsze priorytety w Europie.

Koniec transrewolucji? Koncerny wracają do wyklętej J.K. Rowling z ostatniej chwili
Koniec transrewolucji? Koncerny wracają do "wyklętej" J.K. Rowling

Autorka takich powieści jak "Harry Potter" i "Fantastyczne zwierzęta" J.K. Rowling publicznie sprzeciwia się ideologii gender. Jednakże kilka lat wystarczyło, aby branża filmowa porzuciła walkę z Rowling. Obecnie jest zaangażowana w nową produkcję HBO.

Ambasador USA Mark Brzeziński rezygnuje ze stanowiska pilne
Ambasador USA Mark Brzeziński rezygnuje ze stanowiska

Jak przekazał portal Interia ambasador USA w Polsce Mark Brzeziński poinformował o swojej rezygnacji ze stanowiska. 

Francja namawia Warszawę. Chodzi o ograniczenie dzieciom dostępu do mediów społecznościowych z ostatniej chwili
Francja namawia Warszawę. Chodzi o ograniczenie dzieciom dostępu do mediów społecznościowych

Francuski rząd ponawia próbę przeforsowania w UE przepisów ograniczających dostęp dzieciom poniżej 15. roku życia do mediów społecznościowych.

Krzysztof Stanowski atakowany za zapowiedź wywiadu z Januszem Walusiem. Jest oświadczenie dziennikarza pilne
Krzysztof Stanowski atakowany za zapowiedź wywiadu z Januszem Walusiem. Jest oświadczenie dziennikarza

Założyciel Kanału Zero Krzysztof Stanowski wystosował oświadczenie ws. zapowiedzi wywiadu z Januszem Walusiem.

Problemy Polski 2050. PKW zgłasza liczne zastrzeżenia polityka
Problemy Polski 2050. PKW zgłasza liczne zastrzeżenia

Jak informuje Rzeczpospolita, PKW ma zastrzeżenia co do Polski 2050 Szymona Hołowni. Pomimo, że jej sprawozdanie finansowe zostało przyjęte, to organ wskazał na liczne uchybienia.

Zabójca południowoafrykańskiego komunisty Janusz Waluś będzie gościem Kanału Zero z ostatniej chwili
Zabójca południowoafrykańskiego komunisty Janusz Waluś będzie gościem Kanału Zero

Kanał Zero poinformował, że po powrocie do Polski Janusz Waluś, zabójca Chrisa Chaniego, przywódcy południowoafrykańskich komunistycznych bojówek, będzie gościem Krzysztofa Stanowskiego.

Kobieta wygrała sprawę z farmaceutycznym gigantem. To pierwszy taki wyrok w Polsce z ostatniej chwili
Kobieta wygrała sprawę z farmaceutycznym gigantem. To pierwszy taki wyrok w Polsce

W 2007 r. Waleria rzuciła się pod pociąg metra i straciła obie nogi. Zażywała ona leki na Parkinsona firmy GSK. Po zapoznaniu się z amerykańską i brytyjską treścią ulotki pozwała do sądu koncern farmaceutyczny, a w tym roku wygrała z nimi w sądzie w sprawie o odszkodowanie.

Trzaskowski ma wrócić do pomysłu ulicy Lecha Kaczyńskiego w Warszawie gorące
Trzaskowski ma wrócić do pomysłu ulicy Lecha Kaczyńskiego w Warszawie

Zdaniem Gazety Wyborczej, prezydent Warszawy Rafał Trzaskowski zamierza sięgnąć po prawicowy elektorat. W tym celu planuje pojawić się na ingresie nowego metropolity warszawskiego abp. Adriana Galbasa oraz wrócić do pomysłu nadania imieniem ś.p. Lecha Kaczyńskiego jednej z warszawskich ulic.

REKLAMA

Istnienie Wstęgi Möbiusa kłóci się ze zdrowym rozsądkiem

Wstęga Möbiusa – kształt, który doskonale znamy (z dzieciństwa z zabaw, z dorosłości z logotypów firm i idei) – przez 50 lat stanowiła nie lada zagadkę dla inżynierów, matematyków i fizyków. Choć wydawało się, że można było ją robić dowolnie małą, miała swoje ograniczenia. Złe dobranie jej długości i szerokości powodowało, że się zrywała i nie dawała zakrzywić. To duży problem, bo wstęgę dość często można spotkać w automatyce czy urządzeniach opartych na pracy silnika.
Wstęga Mobiusa Istnienie Wstęgi Möbiusa kłóci się ze zdrowym rozsądkiem
Wstęga Mobiusa / Wikipedia CC BY-SA 3,0 David Benbennick

Sama wstęga to szczególna powierzchnia odkryta przez matematyków dopiero w 1858 roku (m.in. Augusta Möbiusa, stąd jej nazwa) – jednostronna, choć istniejąca w jak najbardziej trójwymiarowym świecie. W naukowym żargonie to dwuwymiarowa zwarta rozmaitość topologiczna nieorientowalna z brzegiem, co oznacza, że nie ma na niej pojęcia „wewnątrz”, „na zewnątrz”, „na górze” lub „na dole” kształtu.

Wstęga popularna w przemyśle

Wstęga Möbiusa ma tylko jedną powierzchnię, co kłóci się ze zdrowym rozsądkiem. Ale łatwo to sprawdzić – rysując linię na jej powierzchni, prędzej czy później trafimy ołówkiem na początek linii. Jej model można zrobić, sklejając taśmę (na przykład papierową) końcami przy odwróceniu jednego z końców o 180 stopni względem drugiego. Proste? W praktyce tak, ale jak dokładnie opisać taką jak najbardziej przestrzenną wstęgę, na której znajduje się tylko jedna – po sklejeniu – nieskończona płaszczyzna?

Jej kształt zachwycał już od pierwszych tygodni jej odkrycia – dzisiaj znajdziemy ją w symbolu recyklingu, w logotypie Międzynarodówki Humanistycznej czy w symbolu nieskończoności (związanym z kształtem wstęgi wyłącznie konicydentalnie) oraz w logo sieciowego dysku Google tworzącym niekończącą się pętlę, tym razem w formie trójkąta. Z kształtu korzystają również organizacje pozarządowe – wszystkie różowe, niebieskie, białe czy czarne wstążki symbolizujące walkę o generalnie lepszy ludzki byt są właśnie wstęgami Möbiusa.
Jeśli zaczniemy się nią bawić, pojawiają się kolejne zaskakujące właściwości kształtu. Rozcięta wzdłuż nie spowoduje, że z jednej otrzymamy dwie podobne wstęgi – ta, którą trzymamy w ręku, będzie po prostu dwa razy dłuższa i podwójnie skręcona, choć wciąż z jedną płaszczyzną.

Jeśli przetniemy taśmę skręconą we wstęgę skręconą o 360 stopni (zamiast pierwotnych 180) otrzymamy dwa kręgi połączone, jak ogniwa w łańcuchu.

Poza wzbudzaniem zachwytu bawiących się nią wstęga niemal natychmiast znalazła zastosowanie w mechanice – tam, gdzie dwa koła połączone są taśmą, zastąpienie jej wstęgą Möbiusa zwielokrotnia trwałość taśmy i powoduje jej wolniejsze zużycie z obu naraz, a nie tylko z jednej strony. Stąd chętnie korzysta się z niej wszędzie tam, gdzie koła zamachowe silników potrzebują taśmowego przeniesienia napędu. Zdarza się znaleźć to rozwiązanie zamiast zębatek w rzadkich i przez to drogich szwajcarskich zegarkach. Rzadkich, bo specjaliści od mikromechaniki szybko zorientowali się, że tego kształtu nie da się pomniejszać w nieskończoność. Przy coraz mniejszej długości przy zachowaniu szerokości wstęgi okazuje się, że kształt się zrywa. Od półwiecza matematycznym problemem było znalezienie proporcji, przy jakich można tego uniknąć.

Po latach liczenia

Rozwiązanie zaproponował matematyk z Brown University Richard Schwartz, dzisiaj przyznający się, że od problemu uzależnił się, nie mogąc pracować nad czymkolwiek innym.

„Przez lata próbowałem rozwiązać ten problem i w 2021 r. opublikowałem artykuł przedstawiający obiecujące podejście, które jednak ostatecznie okazało się niewystarczające” – wspomina dzisiaj na łamach naukowych czasopism. Niedawno zaczął więc eksperymentować ze zgniataniem papierowych pasków w nadziei, że kształt 2D będzie łatwiejszy do matematycznego rozwiązania. Kiedy jednak rozciął jedną z tych pętli pod kątem (co było konieczne do rozwiązania problemu optymalizacji), zobaczył coś, czego się nie spodziewał… Dwuwymiarowy papier nie wyglądał jak równoległobok, jak opisał w swojej pierwszej pracy. Był to raczej trapez – kształt o czterech prostych bokach, z których tylko dwa są do siebie równoległe.

Geometria złożonych kształtów pozwoliła na określenie, że stosunek długości do szerokości wstęgi powinien być większy od pierwiastka kwadratowego z trzech (czyli około 1,73).

W ciągu wielu nieprzespanych nocy i przy pomocy kilku kolegów – jak wspomina Schwartz – matematyk poprawił swoje wcześniejsze błędy i doszedł do eleganckiego rozwiązania z pierwiastkiem z trzech, czego przez pół wieku nie dopatrzyli się inni matematycy.
Co zmieni w naszym życiu niedawne odkrycie matematyków? Przeciętny człowiek raczej różnicy nie dostrzeże – wstęga Möbiusa dalej pozostanie fascynującą ciekawostką, która pewnie trafi jeszcze na niejedno logo. Jednak w z pewnością znalezienie odpowiednich proporcji ułatwi tysiącom producentów, projektantów i inżynierów planowanie kolejnych linii produkcyjnych w fabrykach dostarczających nam samochody czy sprzęt AGD. Z pewnością wpłynie na lepsze wykorzystanie materiałów i pośrednio na środowisko naszej planety. Co ciekawe, matematyk, który znalazł rozwiązanie, nie zarobi na nim ani centa. Zgodnie z międzynarodowym prawem nie można opatentować prawa natury ani zasad matematyki. Richard Schwartz może liczyć wyłącznie na zasłużone miejsce w akademickich podręcznikach matematyki.

Tekst pochodzi z 39 (1809) numeru „Tygodnika Solidarność”.



 

Polecane
Emerytury
Stażowe